
NAVAL POSTGRADUATE SCHOOL
Monterey, California

A/35275
THESIS

A FORMAL APPROACH TO
HAZARD DECOMPOSITION

IN
SOFTWARE FAULT TREE ANALYSIS

by

Donald Michael Needham

June, 1990

Thesis Advisor: Timothy Shimeall

Approved for public release; distribution is unlimited.

20100915195 T247296

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution is unlimited

2b. DECLA35IFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a, NAME OF PERFORM!..,
Computer Technology

0B6ANJZATI0N
/ Curriculum

6b. OFFICE SYMBOL
(if applicable)

37

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

PIG

Naval Postgraduate School
6c. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey CA 93943-5000

srm OF FUNDING/SPONSORING
NIZATION

6b. OFFICE SYMBOL
(if applicable)

5 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBEH

it>. SOURCE OF FUNDING NUMBERS" 6c. ADDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION N<

11. TITLE (Include Security Classification)
A FORMAL APPROACH TO HAZARD DECOMPOSITION IN SOFTWARE FAULT TREE ANALYSIS(U)

mmmfflu.
13a TYPE, OFREPORT
Master s Thesis

i&. TIME COVERED
FROM TO

15. PAGE COUNT
75

14. DATE OF REPORT (Year, Month, Day)
June 1990

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of tl
Department of Defense or the US Government

17 COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Fault Tree Analysis, Software Safety, Real-time software, Control softwan
Formal Models, Life-critical software, Safety Assessment

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
As digital control systems are used in life-critical applications, assessment of the safety of these control system
becomes increasingly important. One means of formally performing this assessment is through fault tree analysi:
Software Fault Tree Analysis (SFTA) starts with a system-level hazard that must be decomposed in a largely-humar
intensive manner until specific module of the software system are indicated. These modules can then be formall
analyzed using statement templates.

The focus of this thesis is to approach the decomposition of a system-level hazard from a formalized standpoin
Decomposition primarily proceeds along two distinct but interdependent dimensions, specificity of event an

I subsystem size. The Specificity-of-Event dimension breaks abstract or combined events into the specific syster
events that must be analyzed by the fault tree. The Subsystem-Size dimension deals with the scope of the hazard, an
itemizes the subsystems where localized events may lead to the hazard. Decomposition templates are developed i
this thesis to provide a framework for decomposing a system-level hazard to the point at which line-by-line cod
analysis can be conducted with the existing statement templates. These templates serve as guides for conducting th
decomposition, and ensure that as many as possible of all the applicable decomposition aspects are evaluated.
26. DISTRIBUTION/AVAILABILITV OF ABSTRACT
[J UNCLASSIFIED/UNLIMITED fj SAME AS RPT. Q DTIC USERS

K ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22aJJAME,0F RP$P6NSIBIE INDIVIDUAL
Timothy J. Shimeall SF jm 22b. TELEP HONE J/nc/ude Area Code)

(408) 646-2509 m(

1 DO FORM 1473, 80 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited.

A Formal Approach to

Hazard Decomposition

in

Software Fault Tree Analysis

by

Donald Michael Needham

Lieutenant, United States Navy

B.S., United States Naval Academy, 1983

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1990

Author:

Approved by:

^izjb/AJUL/IM*'
Donald Michael Needham

Timothy Shimeall, Thesis Advisor

a^.

LCDR Leigh Bradbury, Second Reader

MU
Robert B. McGhee, Chairman

Department of Computer Science

n

ABSTRACT

As digital control systems are used in life-critical applications, assessment of the

safety of these control systems becomes increasingly important. One means of formally

performing this assessment is through fault tree analysis. Software Fault Tree Analysis

(SFTA) starts with a system-level hazard that must be decomposed in a largely-human-

intensive manner until specific modules of the software system are indicated. These

modules can then be formally analyzed using statement templates.

The focus of this thesis is to approach the decomposition of a system-level

hazard from a formalized standpoint. Decomposition primarily proceeds along two

distinct but interdependent dimensions, specificity of event and subsystem size. The

Specificity-of-Event dimension breaks abstract or combined events into the specific

system events that must be analyzed by the fault tree. The Subsystem-Size dimension

deals with the scope of the hazard, and itemizes the subsystems where localized events

may lead to the hazard. Decomposition templates are developed in this thesis to

provide a framework for decomposing a system-level hazard to the point at which line-

by-line code analysis can be conducted with existing statement templates. These

templates serve as guides for conducting the decomposition, and ensure that as many as

possible of all the applicable decomposition aspects are evaluated.

in

C.4

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

1. Hardware Fault Tree Analysis 1

a. Logical Relationship Between Hardware Events 1

b. Orders of Fault Events 3

2. Software Fault Tree Analysis 6

a. Statement Templates 8

b. Contradiction Within Fault Trees 9

B. SAFETY CRITICAL CONSIDERATIONS 10

C. PROBLEM STATEMENT 11

D. STRUCTURE OF THESIS 13

B. DECOMPOSITION TEMPLATES 14

A. DECOMPOSITION OF A HAZARD 14

B. SOFTWARE SYSTEM REQUIREMENTS 15

C. SPECIFICITY-OF-EVENT DECOMPOSITION DIMENSION 16

D. SPECIFICITY-OF-EVENT DECOMPOSITION TEMPLATES 16

1. OR Template 16

2. NOT Template 18

3. AND Templates 19

E. HIGH-LEVEL TRAFFIC-LIGHT DESIGN 22

F. SUBSYSTEM-SIZE DECOMPOSITION DIMENSION 24

IV

F»— •

G. SUBSYSTEM-SIZE DECOMPOSITION TEMPLATES 25

1. Subsystem Template 25

2. Process Template 27

3. Communication Template 30

4. Access Template 33

H. TIME RELATIONSHIP OF EVENTS 36

I. INTERDEPENDENCE OF DECOMPOSITION DIMENSIONS 39

HI. APPLICATION OF DECOMPOSITION TEMPLATES 40

A. ONE-LANE BRIDGE REQUIREMENTS MODEL 40

B. ONE-LANE BRIDGE HAZARD 41

C. DECOMPOSITION OF ONE-LANE BRDXJE HAZARD 41

1. Specificity-of-Event Decomposition Dimension 41

2. Subsystem-Size Decomposition Dimension 44

3. Overall Fault Tree for Bridge Hazard 51

D. SUMMARY OF DECOMPOSITION TEMPLATE APPLICATION ... 51

IV. CONCLUSIONS AND RECOMMENDATIONS 54

A. CONCLUSIONS 54

1. Relevance to MIL-STD-882B 54

2. Advantages of Decomposition Templates 55

3. Limitations of Decomposition Templates 56

B. RECOMMENDATIONS FOR FURTHER RESEARCH 57

APPENDDC A. REQUIREMENTS MODEL RULES FOR ONE-LANE BRIDGE . 58

APPENDIX B. GRAPHICAL REPRESENTATION OF ONE-LANE BRIDGE ... 59

LIST OF REFERENCES 62

INITIAL DISTRIBUTION LIST 63

VI

LIST OF FIGURES

Figure 1. Relevant Fault Tree Symbols 2

Figure 2. Logical OR and Logical AND 3

Figure 3. Simple Electrical Circuit 4

Figure 4. Ada Assignment Statement Template 9

Figure 5. Decomposition Dimensions 14

Figure 6. OR Template 17

Figure 7. Example OR Template Use 18

Figure 8. NOT Template 19

Figure 9. Example NOT Template 19

Figure 10. AND Template 20

Figure 11. Example AND Template Use 21

Figure 12. AND (WHILE/WHEN) Template 21

Figure 13. Example AND (WHILE/WHEN) Template Use 22

Figure 14. High-Level Traffic-Light Design 23

Figure 15. Subsystem Template 25

Figure 16. Example Subsystem Template Use 26

Figure 17. Process Template 27

Figure 18. Example Process Template Use 29

Figure 19. Communication Template 30

Figure 20. Example Communication Template Use 32

Figure 21. Access Template 33

Figure 22. Access To Device Template 34

Figure 23. Access To Database Template 35

vu

Figure 24. Example Access To Device Template Use 36

Figure 25. Time Template 37

Figure 26. Example Time Template Use 38

Figure 27. Depiction of One-Lane Bridge 40

Figure 28. Bridge Hazard Decomposition 42

Figure 29. Decomposition of Bridge Hazard Event 43

Figure 30. Process Subsystem Decomposition 46

Figure 31. Process Template 47

Figure 32. Access Subsystem Decomposition 47

Figure 33. Access Template 48

Figure 34. Communication Subsystem Decomposition 49

Figure 35. Communication Template 50

Figure 36. Overall Fault Tree for Bridge Hazard 52

vui

ACKNOWLEDGEMENTS

I would like to thank Prof. Timothy Shimeall and Lcdr. Leigh Bradbury for

taking the time to support, encourage and guide me. I would like to thank David L.

Ripps and Prentice Hall, Inc., for permission to reprint the material from AN

IMPLEMENTATION GUIDE TO REAL-TIME PROGRAMMING, 1990, pp. 35-39,

that appears in appendices A and B and is quoted in Chapter III. Finally, I would like

to thank my wife Catherine and daughter Mary for their love, patience and

understanding.

IX

I. INTRODUCTION

A. BACKGROUND

A fault tree is a graphical representation of an analysis of a physical system.

This analysis shows whether a combination of one or more contributing causes can

result in the occurrence of a specific undesired event. The starting point for the

construction of a fault tree is the specification of an undesired event. Fault tree

analysis has been applied to both the hardware and software of systems as a means of

proving an undesired event. The principles that are used to analyze software and

hardware via fault trees are sufficiently different to consider hardware and software

fault tree analysis as two separate processes.

1. Hardware Fault Tree Analysis

Fault tree analysis was first applied to hardware systems, and made

extensive use of hardware component failure rates. With hardware, the probability of a

specific piece of hardware failing due to wear can be accurately determined. Either the

analysis of historical data or direct experimentation can be used to assign a probability

of failure to virtually any piece of hardware. Logic theory in combination with

probability of failure data forms the mathematical basis for fault tree analysis.

a. Logical Relationship Between Hardware Events

The symbols used to build the fault trees presented throughout this

thesis are shown in Figure 1. These symbols are a subset of the symbols presented by

Hammer [Ref. l:pp. 227-229] that are commonly used in both hardware and software

fault tree analysis. Bagchi [Ref. 2:p. 4486] shows how two basic logic properties, OR

and AND can be used to relate the probabilities of independent events. Consider, for

example, the following two equations where A, B, C are independent events and P(A),

CD

The RECTANGLE indicates an event to be
analyzed further

The DIAMOND is used for non-pnmai events
not developed further for lack of information
or insufficient consequences

The OVAL is used to indicate a condition

The AND gate indicates that all input events
are required in order to cause the output
event

The OR gate indicates that one or more of
the input events are required in order to
cause the output event

The NOT gate indicates that the output event
is the logical negation of the input event

Figure 1. Relevant Fault Tree Symbols

P(B), P(C) are equal to the probability of the occurrence of the events A, B, C

respectively. For the purposes of demonstrating the logical AND and OR properties,

let Equation (1) be, "if C=A+B then P(C)=P(A)+P(B)-P(AAB)", and let Equation (2) be,

"if C=A*B then P(C)=P(A)*P(B)M. In both Equation (1) and Equation (2), P(X) is the

probability of independent event X occurring. Equation (1) can be reduced to

P(C)=P(A)+P(B), since the purpose of subtracting the probability of the intersection of

two events is to remove the redundancy involved when two OR'd events occur

simultaneously. With respect to fault tree analysis, this subtraction is not strictly

necessary. If two OR'd events occur simultaneously, the resultant event holds just as if

either one of the OR'd events had occurred separately, and in many systems the

probability of two simultaneous component failures is sufficiently low as to be

negligible.

Equations (1) and (2) form the basic foundation of the graphical

depiction of a fault tree, although any logical relation (XOR, NAND, NOR, etc.) can

be used as required to correcdy represent the system. Bagchi represents the logical OR

of Equation (1) and the logical AND of Equation (2) graphically in Figure 2.

Event C
P|C)

A
1 1

Event A
P(A)

Event B
P(B)

Event C
P(C)

Q
1 1

II
Event A

P(AJ
Event B

P(B]

Figure 2. Logical OR and Logical AND

The OR gate of Figure 2 shows the resultant fault tree from a system

that has two components in series. A failure causing either event A or event B will

result in the event C. The AND gate of Figure 2 shows the fault tree from a system

that has two parallel events. As indicated by the AND gate, both events A and B must

occur in order for event C to result. [Ref. 2:p. 4486] In short, fault tree analysis can

be used to identify combinations of events (hardware failure, design flaws) that have

the potential of causing the occurrence of the specified undesired event.

b. Orders of Fault Events

An important aspect of the use of fault tree analysis is the

decomposition of an undesired event into sub-events. These sub-events must be further

decomposed until system components or actions are identified. If these system events

can be proven to be incapable of occurring, the system is proven incapable of

generating the undesired event.

Fussell developed a methodology called the Synthetic Tree Model

(STM) [Ref. 3:p. 425] that distinguishes between four orders of fault events to guide in

the decomposition of an undesired event. The orders represent various degrees of

abstraction from the actual system components. The lowest order event, first order, is

the most abstract. The undesired event that the fault tree is attempting to prove or

disprove is the first order event that serves as the starting point or "root" of the

analysis tree.

Consider as an example the simple electrical circuit in Figure 3, similar

to the circuit presented by Salem [Ref. 4:p. 54] in his work on fault tree construction.

For the purpose of presenting Fussell's orders of fault events, this example circuit is

Swiicn

Power
Supply

Figure 3. Simple Electrical Circuit

composed of a light bulb, a power supply and a switch for turning the light on and off.

The undesired event that might be used as a first order event could be the event "light

not on". With Fussell's methodology, the fault tree is constructed by manually

decomposing the first order event into higher order (less abstract) events. The

undesired event "light not on" could be broken down into the less abstract events "no

power to light bulb" or "light bulb broken".

Second order fault events are conditions that effect a grouping of

components that if failed would result in the occurrence of the first order event. A

second order event for our example circuit could be "no power in group A", where

group A consists of all components effected by this second order event. In our

example, group A would be comprised of the power supply, light bulb and light switch.

These components are grouped with respect to the serial nature of electronic circuits, in

that the failure of any one component would necessarily result in the apparent failure of

all the other components in the group.

A third order event involves a fully functional component that merely

acts failed due to a failure in another part of the system. The "no power to light bulb"

event decomposed from the original undesired event is an example of a third order

event. The light bulb will act failed (not light up) when in fact the light bulb is

functional but has no power coming into it. To develop this third order event, STM

requires a search for all second order groups in which the light bulb appears. The "no

power to light bulb" event requires "no power" in each of these second order groups

involving light bulbs. In other words, these groups are AND'd together to yield the

third order event "no power in light bulb". Thus, a third order event is comprised of a

combination of applicable second order events.

The final level in FusselPs methodology is the fourth order event. A

fourth order event involves a component that acts failed due to the input that the

component receives. The light switch being in the off position would be an example

of an input that causes the light bulb to act as though it had failed.

The development of Fussell's methodology was based on electronic

circuit principles. Second order events make use of the serial path of an electrical

current. This reliance on the serial nature of components in an electrical system is a

critical aspect of Fussell's STM methodology. It is this serial nature that requires the

grouping of all the components that will also fail if any component along the electrical

path fails. This serial grouping forms the basis for linking a third order event by an

AND of a group of second order events. This serial grouping allows Fussell's

methodology to require that all groups containing a component failure that would yield

the third order event be included in the AND.

Fussell acknowledges that the fault trees constructed using his Synthetic

Tree Model are quite lengthy. The length of his trees is attributable to the method by

which Fussell's methodology groups second order events. Second order events require

the grouping of all components serially connected to a component whose failure would

result in the second order event. This lengthens the tree by adding on components that

a fault tree developed using Fussell's methodology must check. A tree being developed

by a method other than Fussell's might not require this type of grouping, and might

therefore have less branches to check. There is, however, an advantage attributable to

the length of Fussell's trees. Any number of fault trees constructed independently for

the same system and main failure event using Fussell's methodology will result in

identical fault trees [Ref. 3:p 432]. This indicates a level of reliability in Fussell's

methodology, and suggests the possibility that part or all of the fault tree construction

may be automated.

2. Software Fault Tree Analysis

Leveson and Harvey [Ref. 5:p. 570] describe an analysis technique that

makes use of the basic principles of fault tree analysis, but applies them to the analysis

of the software of a system rather than to a system's hardware components. Since the

basic notion of determining what sequence of events are capable of producing the

undesired event is the same for the analysis of both hardware and software, a software

tree can be linked together with a hardware tree at the appropriate interface. This

allows the analysis of an undesired event to span over the entire hardware/software

system. This linkage ability strengthens software fault tree analysis (SFTA) by

allowing the effects of a hardware failure on the software system to be analyzed.

The value of being able to link together both the hardware and the software

of a system when conducting software fault tree analysis is illustrated by an example of

a hazard resulting from missile launch control software being tested for the F/A-18

aircraft [Ref. 6:p. 3]. The computer system was being used to control the launch of a

wing mounted missile. The computer system was to fire the missile, open the wing

station clamp to release the missile, and then close the clamp. The hazard occurred

because the software closed the clamp before the missile had built up enough thrust to

leave the wing. This resulted in the aircraft having 3000 pounds of extra thrust

attached to the wing of the aircraft. The ability of SFTA to be linked in with a

hardware fault tree presents the opportunity to fully analysis these interrelated errors.

There are differences in the approach that software fault tree analysis takes

in the analysis of a software system that sets this method apart from the more

traditional hardware fault tree analysis methods. A hardware fault tree relies on the

probabilities of failure for various hardware components. These failure probabilities are

either known, or can be accurately predicted. Hardware fault tree analysis makes use

of these probabilities of failure to construct a tree that will show which components are

critical to the system. This tree construction based on failure probabilities is possible

since hardware components are assumed to fail independently at a determinable rate.

Software fault tree analysis cannot proceed in the same manner since no such

assumption about failure independence can be made about software component failures.

[Ref. 5:p. 576] Furthermore, since software faults are design faults, determination of a

software failure rate is an unsolved problem [Ref. 7:p. 104].

The approach taken by Leveson and Harvey's software fault tree analysis is

to use the fault tree to show that the logic of the software design will not produce or

contribute to actions that lead to system failures. This analysis can take place at any

desired level of abstraction, including code level analysis. If a failure is shown to be

possible, the structure of the resultant tree determines any environmental conditions that

could lead to the software causing a safety failure. [Ref. 5:p. 576] Software fault tree

analysis starts with the assumption that the software system has gotten itself into a state

in which the undesired event has occurred. With this assumption, the fault tree is

developed backwards starting with the undesired event and examines all the possible

paths that lead to the undesired event. Typical usage starts with the program

statements as written in the implementation language. Each statement is assumed to

have executed in a manner such that the undesired event occurs. The development

proceeds by looking at each statement and determining how the assumed statement

execution was allowed to occur.

a. Statement Templates

Cha, Leveson and Shimeall [Ref. 8:pp. 380-383] present statement

templates (hence forth referred to as "Cha's Templates" for convenience) that are used

to analyze each of the possible Ada statements. The template for the decision

statement shows all the pathways that the software can take when a decision statement

is executed. The template for non-decision statements can be used to analyze the

various possible results from each statement, and can show whether the execution of

the assignment statement could result in another link in the chain leading back to the

undesired event. Figure 4 is an example of a template developed for an Ada

assignment statement [Ref. 8:p. 380].

1 1
Change in

Value

Causes Failure

Exception

Causes

Failure

Operand

Evaluation

Causes Failure

Figure 4. Ada Assignment Statement Template

Cha's templates were designed using statement semantics from the Ada

language, and by analyzing the causes of frequently made programming errors. The

templates suggest possible branches to analyze specific statements. This aids the

analyst in the consideration of all the possible results of a statement. The authors

contend that templates could be constructed to analyze program statements written in

any language, and allude that the templates might be tailor made to try to uncover

specific errors. This tailoring might make the search for critical, system specific events

more effective.

b. Contradiction Within Fault Trees

With or without the guidance of statement templates, every single

safety-critical path that the software may take during the course of execution must be

analyzed via a branch in the fault tree. Ideally, as paths are analyzed, contradictions

will occur. A contradiction with regard to software fault tree analysis is when an event

that could cause the undesired event is prevented by the software. Since the

contradicted event cannot occur, that particular analysis branch need no longer be

pursued.

A path that terminates without a contradiction is a path via which the

undesired event can occur, and actually proves that the undesired event could possibly

be generated by the system software. Since the exact path that allows the undesired

event is now known, it is a simple matter to place run-time checks in the code to halt

the pathway to the undesired event.

Even with the ability to halt tree development after a contradiction, any

given fault tree may still be lengthy if carried out to full term. Leveson and Harvey

[Ref. 4:p. 576] point out that it is not necessary to expand the entire tree down until

every path terminates in either a contradiction or the system environment. At any level

of abstraction, the analysis may be halted and run-time checks inserted into the code to

trap a developing unsafe state.

B. SAFETY CRITICAL CONSIDERATIONS

The prospect of testing a system using fault tree analysis may seem tempting

since this analysis method effectively proves whether or not a system will allow a

specific event to occur. However, testing deals primarily with determining whether or

not a system will function as it was designed to. The purpose of testing a system is to

attempt to show that the system does not meet its specification [Ref. 9:p. 3].

Leveson and Harvey [Ref. 5:p. 571] point out that software fault tree analysis is

focused on proving that the system is incapable of producing a specific event from a

software standpoint. This is much different from testing to see if a system will provide

correct output for all of a potentially infinite set of states that the system could be in

during the course of execution. Focusing on proving that the system cannot produce a

specific undesired event allows the analysis to take advantage of path termination when

a contradiction occurs, which makes for shallower trees. Still, the set of what a

software system is not supposed to do is the complement of what the system is

10

supposed to do, with the size of both sets potentially being very large. To attempt to

use software fault tree analysis on the set of events that the system is not supposed to

do would require an impossibly large number of fault trees to be developed. Since the

development of a fault tree is generally not a trivial undertaking, the set of events to be

analyzed must be reduced. The reduction of this set is where safety criticality comes

in.

The inclusion of safety criticality as a means of reducing the set of undesired

events with which the software fault tree analysis must contend primarily relies on two

underlying concepts. As Cha [Ref. 8:p. 377] points out, the first concept is that not all

failures are of equal consequence, and the second concept is that the number of

potentially serious failures is relatively small as compared to the overall set of

undesired events. Reducing the set of undesired events by determining which events

are critical to the safe operation of the software system allows SFTA to be focused on

the smaller set of potentially high-cost or otherwise unacceptable errors.

C. PROBLEM STATEMENT

The templates presented by Cha are useful in guiding the statement by statement

decomposition of software fault trees. However, these templates are limited in

application to line by line code analysis, and do not deal with undesired events not

linked to single linear sequences of statements. With current software fault tree

analysis techniques, no formal method exists for decomposing a system-level hazard to

the point at which the Cha statement templates can be applied. System-level hazards

are currently decomposed manually in what proves to be a largely human intensive

manner. Decomposition of system-level hazards in this manner relies heavily on

human insight and knowledge of the software system, and introduces human error in

the form of oversight.

11

This thesis approaches the decomposition of a system-level hazard from a

formalized standpoint The decomposition of the system-level hazard primarily

proceeds along two distinct but interdependent dimensions, specificity of event and

subsystem size. The hazard starts as a more general event that is assumed to occur

somewhere within a large system or subsystem. The process of decomposition involves

breaking the hazard into more specific events, or itemizing subsystems within which

the hazard may be a consequence. Decomposing a hazard in one dimension often

results in opening up further possibilities for decomposition along the other dimension.

The Specificity-of-Event decomposition dimension deals with how specific the

events and conditions associated with the hazard are. The goal of this decomposition

dimension is to identify the particular events that are to be analyzed within the

subsystems that comprise the system being examined. This decomposition works by

itemizing each event that could cause the hazard in the current subsystem. For this

itemization to be effective, the scope of the decomposition must constitute a complete

enumeration of the ways in which the hazard could occur within the current subsystem.

Although some of these itemized events will not be considered further, due to the

contradictions that the events represent, all possible occurrences of the hazard are

itemized for completeness. The sum of these itemized events represents in total the

ways in which the hazard can occur within the scope of the current subsystem.

The Subsystem-Size decomposition dimension deals with how large of a

subsystem is being considered when determining how the hazard being analyzed can

occur. This decomposition dimension moves the scope of the hazard from a more

general system wide event, to an event that is more specific in terms of the scope of

the subsystem that the event effects. This increase in the specificity of the event

effectively works to identify the specific system events that must be targeted for

12

analysis by the statement templates. Decomposing the hazard into various subsystems

focuses the tree towards subsystems that play a role in the hazard being analyzed.

D. STRUCTURE OF THESIS

Chapter II develops the design of templates that provide a framework for

decomposing a system-level hazard to the point at which line by line code analysis can

be conducted with existing statement templates. These templates serve as guides for

conducting the decomposition, and ensure that as many as possible of all the applicable

decomposition aspects are evaluated.

Chapter III demonstrates the use of the decomposition templates through an

example. The fault tree is developed starting with the decomposition of an undesired

system-level event. Events are further decomposed using the templates developed in

Chapter II indicating specific modules of the software system along with associated

specific events and conditions. This decomposition process is continued until the point

at which Cha's statement templates can be implemented.

Chapter IV summarizes the work accomplished through the use of the

decomposition templates, and the conclusions that were drawn through the development

of this thesis. Areas of future work in the area of software event decomposition

templates are indicated in this chapter.

13

H. DECOMPOSITION TEMPLATES

A. DECOMPOSITION OF A HAZARD

The hazard at the root of the software fault tree is decomposed in a manner such

that statement templates may be used to analyze the hazard at the statement level of

each applicable subsystem. The hazard is decomposed in two different abstract

dimensions. As depicted by Figure 5, these decomposition dimensions are the

specificity of the event being considered, and the size of the subsystem being

considered.

Specific implement
Statement

Specificity
Of Event

Templates

General Ha: ard

Large 5mai

SuDsystem Size

Figure 5. Decomposition Dimensions

Figure 5 shows the hazard starting as a more general event that occurs

somewhere in a large system or subsystem. The process of decomposition involves

breaking the hazard into more specific events, or itemizing subsystems within which

the hazard may be a consequence, or both. In both dimensions of the graph in Figure

5, the path that the decomposition process takes is non-decreasing in nature. For

14

example, the Specificity-of-Event dimension may be held constant so as to allow the

other dimension, Subsystem-Size, to move more to the right as it is decomposed.

However, the Specificity-of-Event dimension does not move towards a more general

event to allow the Subsystem-Size dimension to move from a larger to a smaller

subsystem size. A move such as this results in backtracking within the analysis tree.

Although a backtracking move would be required when the analyst determines that a

previous move was incorrect, backtracking effectively accomplishes nothing more than

returning to a previous state so that the analysis can take an alternate avenue.

B. SOFTWARE SYSTEM REQUIREMENTS

In order to illustrate each decomposition template as it is presented, a simple

software program is used. The following requirements for an imaginary traffic light

control program for an automobile intersection was used by Cha, Leveson and Shimeall

in demonstrating the use of software statement templates, and is repeated here :

"A traffic light control system at an intersection consists of four (identical)
sensors and a central controller. The sensors in each direction detect cars
approaching the intersection. If the traffic light currently is not green, the sensor
notifies the controller so that the light will be changed. A car is expected to stop
and wait for a green light. If the light is green already, the car may pass the
intersection without stopping. The controller accepts change requests from the
four sensors and arbitrates the traffic light changes. Once the controller changes
the light in one direction (east-west or south-north) to green, it maintains the
green signal for five seconds so that other cars in the same direction may pass in
the same direction without stopping. Before the green light in any direction
becomes red, it should remain in yellow for one second so that any car present in
the intersection may clear. The light then turns to red while the light in the
opposite direction turns to green." [Ref. 8:p. 382]

With the above requirements, the hazard analyzed to illustrate the decomposition

templates is "Two Cars Simultaneously in Intersection Traveling in Perpendicular

Directions", or "Perpendicular Cars" for short. As noted by Cha, the above

requirements were designed to contain several failure modes. Finding failure modes

other than the one illustrated by Cha have no relevance to the importance of Cha's

15

work. Hazard decomposition as presented herein is intended to precede and

complement Cha's work on statement templates. The application of statement templates

completes the hazard decomposition presented in this thesis.

C. SPECinCITY-OF-EVENT DECOMPOSITION DIMENSION

The Specificity-of-Event decomposition deals with how specific the events and

conditions associated with the hazard are. The goal of decomposing the hazard with

regard to specificity is to identify the particular events that are to be analyzed within

the subsystems that comprise the system being examined. This decomposition works

by itemizing each event that could cause the hazard in the current subsystem. For this

itemization to be effective, the scope of the decomposition must constitute a complete

enumeration of the ways in which the hazard could occur within the current subsystem.

Although some of these itemized events will not be considered further due to the

contradictions that the events represent, all possible occurrences of the hazard are

itemized for completeness. The sum of these itemized events represents in total the

ways in which the hazard can occur within the scope of the current subsystem.

D. SPECIFICITY-OF-EVENT DECOMPOSITION TEMPLATES

Three basic logic relations, OR NOT and AND, are used to determine the

relationship of the events itemized by the decomposition process. The following

templates show the logical relationship that the decomposed event(s) and condition(s)

have to the hazard.

1. OR Template

The OR Template (Figure 6) is used to decompose a hazard that occurs

because either one of two events (Event 1 or Event 2) occur. Both Event 1 and Event

2 are capable of singularly causing the hazard to occur. Since either Event 1 or Event

2 could cause the hazard, each event is given its own branch within the OR gate. The

16

Hazard occurs Because
Event 1 or Eveni 2 Occurs

Event 1 Occurs
Both Event 1 And

Event 2 Occur Event 2 Occurs

Figure 6. OR Template

center branch within the OR gate is reserved for the instance in which both Event 1

and Event 2 occur simultaneously. Further decomposition on this center branch

generally is halted immediately because in order for this branch to be taken during

analysis, both events must occur. If both events occur, then the hazard will occur the

same as if only one of the events had occurred. The analysis of the center branch may

be a direct duplication of the analysis of the two separate events, and in that case it is

not further pursued. Only if the center event suggests important and non-duplicative

analysis directions is it explored. For example, if the two events leading to a hazard

are not independent, the center branch could be used to explore their interdependency

as a source of the undesired event. If the center branch is irrelevant, it is omitted from

the analysis.

An example of the decomposition of the hazard using a OR Template

(Figure 7) in the traffic light control system is found in the requirements. The

requirements state that before the green light in any direction becomes red, it should

17

Perpendicular Cars
In Intersection

No Pause in Yeiiow
Wnen Lignt Commanded

From Green to Red

Soltware Cornmanos
Perpmacuiar
Lights Green

Figure 7. Example OR Template Use

remain in yellow for one second so that any car presently in the intersection may clear.

If the software fails to make each light pause in yellow for one second during the

transition from green to red, a car could get caught in the intersection when the

opposing traffic light turns green. One branch of the OR Template for the

decomposition of Perpendicular Cars is the event "No Pause in Yellow When Light

Commanded From Green to Red". Another branch considered here is the software

system's command of the lights. If the software were to command perpendicular lights

to be green at the same time, the Perpendicular Cars hazard could occur. This

decomposition represents the second branch as "Software Commands Perpendicular

Lights Green".

2. NOT Template

The NOT Template (Figure 8) is used to decompose a hazard that occurs

because an event or action fails to occur. The logical NOT decomposes the hazard

18

such that it is not the case that the event does occur. This frees the analyst to consider

the case in which the event does occur. As with a mathematical proof by

contradiction, it may be more straightforward to show that there is a contradiction with

assuming that an event does occur than it is to show that, for all cases, it is impossible

for the event to occur within the system. An example of the use of a NOT Template

(Figure 9) is the "No Pause in Yellow When Light Commanded From Green to Red"

Branch of the example OR Template hazard decomposition appearing in Figure 7. By

H«nr4 Occurs Btcim*
ACIKM Flilt ro 88 Dons

Htnrrj Occurs Steam
ACIiOB IS DOM

NO Ptist m -naiiow
w»en lMil Commanded

Frea Grttn is Rta

Pause ia Tenow Waen
lig«l Corairuridea
Fro* Grt«n to B«o

Figure 8. NOT Template Figure 9. Example NOT Template

applying the NOT Template, the event "Light Pauses in Yellow When Light Goes

From Green to Red" could instead be analyzed if this event is deemed more

straightforward to evaluate.

3. AND Templates

A logical AND is represented with two different AND decomposition

templates. The first AND Template (Figure 10) is used to decompose a hazard that

occurs because both of two separate events (Event 1 and Event 2) occur. This

19

Hazard Occurs Because
Both Eventl And Evenl2 Occur

Evenll Occurs Event? Occurs

Figure 10. AND Template

decomposition template breaks the hazard into two events, each of which is analyzed

individually. If either of the events can be shown to be incapable of occurring, the

analysis of both of the AND branches is stopped.

An example of the use of the AND Template (Figure 11) is to further

decompose the "Software Commands Perpendicular Lights Green" branch of the OR

Template. To decompose this branch further, consideration must be given as to how

the software could end up in a state in which perpendicular lights have been

commanded green. One way for this event to occur is if the software properly

commands a light green, while at the same time the perpendicular tight is stuck in a

green state.

The second AND (WHILE/WHEN) Template (Figure 12) is used to

decompose a hazard that occurs because an event occurs while a specific condition is

true. If the condition does not hold while the event occurs, then the hazard does not

occur. Thus, the event is dependant upon the condition associated to it by the AND

20

Software Commands
Perpendicular Ltgnis

Green

n
Software Commands

One Light Green
Perpendicular Lignt

Stuck in Green Slate

Figure 11. Example AND Template Use

gate. All subsequent decompositions resulting from the event side of the AND gate

carry with them the scope of the condition side.

Hazard Occurs Because Event occurs

While or When Condition is True

0
Event Occurs /^Conoition^

Figure 12. AND (WHILE/WHEN) Template

21

An example of the use of the AND (WHILE/WHEN) Template (Figure 13)

is to further decompose the "No Pause in Yellow When Light Commanded From Green

NO Pause m Yellow wnen Ltqnt
Commanded From Green to fled

Light Does Not
Pause in Yellow

Q
Light Commanded

From Green To Red

Figure 13. Example AND (WHILE/WHEN) Template Use

to Red" branch of the example OR Template hazard decomposition in Figure 7. This

event is broken down into an event and a condition that must be true in order for the

associated event to result in the occurrence of the hazard. The event is decomposed

using an AND (WHILE/WHEN) Template into the event "Light Does Not Pause in

Yellow" and the condition "Light Commanded From Green to Red".

E. HIGH-LEVEL TRAFFIC-LIGHT DESIGN

For the purposes of demonstrating the subsystem decomposition templates, a

simple high level design loosely fulfilling the requirements for Cha's stoplight system is

represented in the High-Level Traffic-Light Design (Figure 14). This high-level design

has a "controller" process which determines how the four lights should be set, and

22

sends commands for changing the lights to four identical "Set Signal" processes. The

four "Set Signal" processes in turn control the four traffic light devices.

Clock Time Signals

Cor Arrival Signal
Command to Set Lights

Car Arrives

Sensor Hardware
Traffic Signal

Figure 14. High-Level Traffic-Light Design

When the "Controller" process determines a light should be changed from green

to red, the "Controller" process is responsible for ensuring that the light pauses in

yellow during the transition. Each "Set Signal" process controls one of the four

physical traffic signals in the intersection, and sends green, yellow, and red indications

to the traffic light as directed by the "Controller" process. The "Controller" process

determines how the four lights should be set by accepting input both from a clock and

from the four identical "Read Car Sensor" processes. Each "Read Car Sensor" process

reads sensor hardware that indicates when a car has approached the intersection. The

"Controller" process uses input from the clock device to ensure that the light has

remained green in one direction long enough to allow a predetermined minimum

number of cars through the intersection. This high-level design is by no means

23

complete, and is intended to be a tool for demonstration of the use of subsystem

decomposition templates.

F. SUBSYSTEM-SIZE DECOMPOSITION DIMENSION

The Subsystem-Size decomposition dimension deals with how large a subsystem

is being considered when determining how the hazard being analyzed can occur. The

size of the subsystem may start out comprising the entire software and hardware system

in the beginning of the decomposition. This decomposition moves from a more general

system wide event, to an event that is more specific in terms of the scope of the

subsystem that the event effects. This increase in the specificity of the event

effectively works to identify the specific system events that must be targeted for

analysis by the statement templates. Decomposing the hazard into various subsystems

focuses the tree towards subsystems that play a role in the hazard being analyzed.

Along with indicating which subsystems should be investigated, the software fault

tree must indicate any conditions or events that must be considered when analyzing the

subsystem on a statement by statement basis. These conditions and events are

indicated through the previously described AND (WHILE/WHEN) template (Figure 12).

The focus of the templates presented below is to decompose the overall software

system with the intent of identifying the subsystems that can contribute to the

occurrence of the hazard.The decomposition of a system into its various subsystems

relies on the communication links and interfaces with which the system will function.

In order to demonstrate the use of subsystem decomposition templates, the high-level

design for the traffic light system previously described is used to represent the

communication between the processes of the subsystem.

24

G. SUBSYSTEM-SIZE DECOMPOSITION TEMPLATES

1. Subsystem Template

Subsystem decomposition templates are used to break out from the overall

system the various systems and subsystems that must be considered in regard to the

hazard. Three templates are used for the decomposition of subsystems, and are related

via an OR gate as shown in the Subsystem Template (Figure 15).

At the root of the Subsystem Template is the subsystem that is indicated by

the hazard or event The Process Template branch decomposes the subsystem based

Subsystem
To Be

Decomposed

Process

Template

Communication

Template

Access

Template

1 (C I J)
Figure 15. Subsystem Template

upon the input-process-output of a subsystem. The Communication Template branch

decomposes the subsystem based upon the communication between various processes

within a subsystem. The Access Template branch decomposes the subsystem based

upon the access that a subsystem may have to a device or database.

25

An example of the use of the Subsystem Template (Figure 16) is to

decompose the event "No Pause in Yellow When Light Commanded From Green to

Red" from the left branch of the example OR Template (Figure 7). At this point, the

entire system is considered when determining which subsystems to decompose based

upon this event Subsequent decompositions using the Subsystem Template would use

the scope of the subsystem that is currently being evaluated as the root subsystem of

the template.

Decompose Entire System
Based on Event 'No

Pause m Yellow wnen ugm
Commanaefl From Green to Rea'

Controller
Process
Causes

Above Event

Processes That
Communicate Witn
Controller Process
Cause Above Event

Processes That
Have Access To

Traffic-Lignt
Device Cause
Above Event

Figure 16. Example Subsystem Template Use

To evaluate the event "No Pause in Yellow When Light Commanded From

Green to Red" for subsystem decomposition, the analyst must determine from the

system design the processes that control the traffic light, the subsystem(s) that

communicate with these controlling processes, and the processes that actually have

access to the traffic light. The processes that can be decomposed from the system are

determined by evaluating the High-Level Traffic-Light Design (Figure 14).

26

As shown in Figure 16, the "Controller" process is indicated in the left

branch of the template because it is the process within the system that controls the

traffic light by sending commands to set the traffic signal to the "Set Signal" process.

The middle branch of Figure 16 indicates that all the processes that communicate with

the "Controller" process must be considered by the decomposition. The right branch of

Figure 16 indicates that all processes that actually have access to the traffic light should

also be considered in this decomposition step.

2. Process Template

The Process Template (Figure 17) is used to decompose the subsystem by

evaluating the three basic areas of the subsystem. These three areas are distinguishable

by their relation to the overall process contained within the subsystem.

Process Indicated By Event X

Input to Process Internal Process

Individual Subprocess
(i-N) Caused Event x

Output of Process

Subprocess Interaction
(1-N) caused Event x

Figure 17. Process Template
0/-j Qflo.' .j

27

The first branch of the Process Template (Figure 17), Input To Process,

decomposes the subsystem by considering the input to the subsystem from either a

larger subsystem within which the current subsystem is contained, or input from the

environment within which the subsystem operates. The input to the process within the

subsystem is decomposed to evaluate whether or not input to the process can cause the

hazard to occur.

The second branch of the Process Template (Figure 17), Internal Process,

deals with the overall process that the current subsystem performs. As shown by the

Process Template, the overall process itself can be decomposed into subprocesses 1-N.

The total number of subprocesses (N) is limited because of the safety critical nature of

the system being analyzed. If N is excessively large, then the system is inherently

unsafe because the safety critical processes cannot reliably be isolated. The Process

Template is designed for use on systems with a relatively small number of safety

critical subprocesses. These N subprocesses are considered in two ways, individually

and in combination.

Under the Individual Subprocess branch of the Process Template (Figure

17), each subprocess is considered individually to determine if any one of the N

subprocesses can by itself result in the occurrence of the hazard. Each subprocess is

strictly evaluated in isolation, with no interaction allowed from any other subprocess.

If a subprocess always requires interaction with other subprocesses, then the individual

subprocess decomposition is stopped. A subprocess requiring interaction is evaluated

under the Subprocess Interaction branch of the Process Template.

The second way in which the Process Template (Figure 17) considers the N

subprocesses that are decomposed via the Internal Process branch is through the

evaluation of the interaction of one of the N subprocesses with another of the N

subprocesses. The decomposition of the process of a subsystem that takes advantage of

28

parallel processing must consider the different combinations of subsystems that are

capable of processing in parallel. From this set of combinations, the software fault tree

must consider whether any of the combinations are capable of interacting in a manner

that would result in the occurrence of the hazard.

The third branch of the Process Template (Figure 17), Output of Process,

decomposes the subsystem by considering the output that is produced by the overall

process that the current subsystem performs. The output from the process is evaluated

to consider whether the output can cause the hazard to occur.

An example of the use of the Process Template (Figure 18) is to decompose

the "Controller" process of the high-level traffic light design. The decomposition starts

with the analyst pursuing the "No Pause in Yellow When Light Commanded From

Green to Red" event branch of the example OR Template (Figure 7). The analyst

determines that the "Controller" process is a process that could be indicated by the

occurrence of this event.

Controller Process Indicated By Even!
"No Pause in Yenow wnen light
Commanded From Green to Red

Internal Processes
Within controller
Cause Above Event

Input From Head Car Sensor
Process Causes Above Event

Output to Set
Signal Processes

Causes Above Event

Input From Clock:
Causes Above Event

Figure 18. Example Process Template Use

29

The "Controller" process is decomposed into three areas as shown in Figure

18. The first branch of the Process Template indicates that the internal processes

within the "Controller" process should be analyzed. The second branch "Input to

Process" indicates that the four "Read Car Sensor" processes and the "Clock" process

should be analyzed since these processes provide input to the "Controller" process.

The third branch indicates that the output from the "Controller" process to the four "Set

Signal" processes should be analyzed to determine if the event in question could be a

result of what is output by the "Controller" process.

3. Communication Template

The Communication Template (Figure 19) is used to decompose a subsystem

based upon the communication between the processes that make up the subsystem.

Processes can communicate via a rendezvous (as in Ada), through shared memory, or

through the exchange of data.

Communication Between
Processes Within Subsystem

Communication via
Rendezvous

Communication via
Shared Memory

Communication via
Exchange of Data

Process template Process template

Process A
Changes Memory

Process B Effected By
Process As Memory Change

Figure 19. Communication Template

30

The communication that can occur through a Ada rendezvous is checked

using the Rendezvous branch of the Communication Template to determine if the

hazard can occur here. Processes that communicate through rendezvous are analyzed in

a manner similar to the way in which processes communicating through the exchange

of data are analyzed. The two processes that rendezvous in effect join to form one

overall process. This combined overall process is then analyzed using the Process

Template.

For processes that communicate through shared memory, each process is

analyzed under the Shared Memory Branch of the Communication Template with

consideration given to changes to the shared memory that the first process can make.

These changes may cause the second process to function in a manner such that the

hazard occurs. As with the Process Template, the number of safety critical processes

that communicate through shared memory must be small. If the number of safety

critical processes communicating through shared memory is excessively large, then the

system is inherently unsafe because the safety critical processes cannot reliably be

isolated.

Whether or not the hazard can occur by way of the exchange of data

through output from one process and input to another process is considered through the

use of Process Templates. In the Exchange of Data branch of the Communication

Template (Figure 19), the two processes exchanging data are considered joined together

to form a single combined process. This combination process is then evaluated under

the Process Template. The data that is output from the first process is analyzed using

the Output of Process branch, while the data that is exchanged as input is evaluated

using the Input to Process branch.

An example of the Communication Template (Figure 20) is limited by the

simplicity of the example high-level traffic-light design. At this level, neither the

31

Processes mat Communicate
Witn Controller Process

Tnrougn Excnange or Data
Cause Hazard

Read Car Sensor
Processes (4)

Cause Hazard
Clock Process
Causes Hazard

Set Signal
Processes (4)
Cause Hazard

Figure 20. Example Communication Template Use

processes that communicate through rendezvous type operations, nor the processes that

communicate through shared memory are known. The first and second branches of the

Communication Template are therefore not pursued in the example.

The third branch of the Communication Template is used to ensure that all

the processes that communicate with the "Controller" process are considered when

analyzing the "Controller" process with regard to the hazard. As indicated by Figure

20, there are three distinct sets of processes that communicate with the "Controller"

process through the exchange of data. These sets of processes are the four "Read Car

Sensor" processes, the "Clock" process, and the four "Set Signal" processes. As shown

by Figure 20, each of these distinct sets of processes must be analyzed for any role

they might play in the "Controller" process causing the event, "No Pause in Yellow

When Light Commanded From Green to Red".

32

4. Access Template

The Access Template (Figure 21) is used to decompose the subsystem by

evaluating the access that the subsystem has to the control of a device or the

maintenance of a database.

Access Subsystem Has To
Oevice/Database causes Hazaro

Access to Device
Causes Hazard

Access to Database
Causes Hazard

Figure 21. Access Template

Using the Access to Device branch of the Access Template, a subsystem

controlling a device is evaluated to determine if the subsystem can control the device in

a manner such that the hazard can occur. As shown in the Access To Device Template

(Figure 22), the analysis of a subsystem's access to a device consists of three distinct

evaluation conditions.

The first evaluation condition of the Access to Device Template is that the

subsystem must have access to the device that causes the hazard. The second

evaluation condition is that the subsystem must be capable of sending commands to the

device, with the hazard occurring as a result of the device receiving these commands.

The third evaluation condition is that the subsystem actually sends the hazard-causing

33

commands to the device. These evaluation conditions are AND'd together because in

order for the subsystem to cause the hazard through its access to the device, all three

of these conditions must be met.

In a similar manner, the Access to Database branch of the Access Template

(Figure 23) is used to determine if a subsystem maintaining a database can make

Subsystem
Accesses

Device

Access To Device
Causes Hazard

Q
Subsystem Senas

Command To

Device

Command From
Subsystem To
Device Causes

Hazard

Figure 22. Access To Device Template

entries or updates to the database that can result in a process accessing the database

values and utilizing these values in such a manner that the hazard occurs. As shown in

the Access To Database Template, the analysis of a subsystem's access to a database is

evaluated using three distinct conditions.

The first evaluation condition is that the subsystem must have write access

to the database from which values that cause the hazard are referenced.

The second evaluation condition is that the subsystem must be capable of

writing values to the database, with the hazard occurring as a result of a process

referencing these values. Here, the removal of a value from the database and having

34

Subsystem
Accesses
DataDase

Access To DataBase
Causes Hazard

Subsystem Writes
Values To
Database

Placement Of
values in

Database By
Subsystem

Causes Hazard

Figure 23. Access To Database Template

the hazard occur as a result of this removal is considered as an overwrite of an original

valid value.

The third evaluation condition is that the subsystem actually writes the

hazard-causing value to the database. These evaluation conditions are AND'd together

because in order for the subsystem to cause the hazard through its access to the

database, all three of these conditions must be met.

An example of the use of the Access To Device branch of the Access

Template is the decomposition of the Output of Process branch of the Process Template

example (Figure 17). This branch indicates that the "Set Signal" processes need to be

analyzed to determine if the "No Pause in Yellow When Light Commanded From

Green to Red" event could be caused within these processes. The Example Access To

Device Template (Figure 24) shows how a subsystem causing the "No Pause in

Yellow" hazard is considered.

Each "Set Signal" process has access to a traffic light since these processes

control the changing of the traffic lights, so these processes are indicated in the first

35

Access To Traffic-Lignt
Device Causes 'No Pause

in Yellow' Hazard

Set Signal
Processes

Have Access
To Traffic-Light

Device

No Pause in
Yellow wnen

Lignt commanded
Red To Green

Causes Hazard

Set Signal
Processes

Do Not
Command

Pause When
Lignt

Commanded
Red To Green

Figure 24. Example Access To Device Template Use

branch of the example. In the second branch of the example, the commands that these

processes give to the traffic light must be analyzed to determine if it is possible for

these processes to send commands that could cause, in this example, the light to not

pause in yellow when changing from green to red. The third branch of the example

indicates that the hazard-causing commands indicated by the second branch must

actually be sent to the traffic light in order for the hazard to occur.

H. TIME RELATIONSHIP OF EVENTS

The decomposition of the hazard event carries with it the implication of going

back in time. As an event is decomposed, all the breakdowns that are the result of the

decomposition have the requirement of occurring simultaneously with the hazard, or at

some time prior to the occurrence of the hazard. SFTA must go backward in time

from the occurrence of the hazard so that the system can be established in a normal

safe operational state. The implication of the fault tree being backed out all the way to

36

the initialization of the system without ending in a safe operational state is that the

unsafe event is not prevented by the system.

The Time Template (Figure 25) shows an event that is decomposed into an event

that must occur first in order for the later event to occur. This decomposition is based

Event 1 Causes Hazard

Event 2 Causes Event 1

Figure 25. Time Template

upon the logical implication, "if A implies B and B implies C, then A implies C", and

carries with it the relationship of the events with regard to time. In Figure 25, Event 1

is the event that the fault tree indicates would cause the occurrence of the hazard.

Event 2 is an event that causes Event 1 to occur. The link between the two events is

that Event 2 must occur before Event 1. Although Event 2 by itself does not directly

cause the hazard to occur, Event 2 must be considered due to its relationship with

Event 1. Because Event 2 causes Event 1 to occur, Event 2 indirectly causes the

occurrence of the hazard.

An example of the use of the Time Template (Figure 26) can be found by

modifying the requirements of the traffic light control system. The modification is that

37

one of the roads leading to the intersection has a blind curve that must be driven

through just prior to entering the intersection. On the curve prior to the intersection is

a flashing yellow light that serves to warn motorists that an intersection with a traffic

light lies ahead.

Figure 26 shows how the Time Template can be used to decompose an event into

a second event that precedes and causes the first event to occur. The event that causes

Cor Entering Intersection

Agomst Red Light Causes
•Perpmdicuiar Cars' Hazard

Yellow Warning ugnt Failure
Causes Car To Enter

Intersection Against Red light

Figure 26. Example Time Template Use

the "Perpendicular Cars" hazard is a car entering the intersection against a traffic light

that is displaying a red signal. The event of entering the intersection against a red light

could indirectly be caused by the flashing yellow warning light being inoperative.

Without the warning to slow down on the blind curve prior to the intersection, the

motorist does not have enough room to stop the vehicle, given reaction time and

stopping distances for a car traveling at normal speed. Thus, the failure of the flashing

yellow warning light indirectly causes the "Perpendicular Cars" hazard.

38

I. INTERDEPENDENCE OF DECOMPOSITION DIMENSIONS

The two decomposition dimensions, Specificity-of-Event and Subsystem-Size, are

dependant on each other. Both are goals of the hazard decomposition. The specificity

of an event can be made more specific as a means of aiding in the decomposition of a

subsystem's size. In a similar manner, the decomposition of a subsystem's size serves

as a means of making the targeted event more specific. As the Decomposition

Dimensions in Figure 5 at the beginning of the chapter shows, the decomposition of a

hazard occurs along two distinct dimensions, specificity of event and subsystem size.

As the system is analyzed, either decomposition dimension can be used as a means of

decomposing the hazard. The templates presented in this chapter form a framework

from which it is possible to decompose the hazard along either of the two dimensions.

As the hazard analysis proceeds, it may be advantageous to decompose the hazard or

event with the intent of making the other decomposition dimension more useful. In

other words, to advance the Subsystem-Size decomposition, the Specificity-of-Event

decomposition dimension may be invoked specifically to help the analyst advance the

Subsystem-Size decomposition. In the following chapter, the framework of

decomposition dimensions and decomposition templates presented in this chapter are

applied to a more complicated example.

39

in. APPLICATION OF DECOMPOSITION TEMPLATES

A. ONE-LANE BRIDGE REQUIREMENTS MODEL

In this chapter, the decomposition templates presented in Chapter II are applied to

the requirements model of a software system developed by Ripps [Ref. 10:p. 32] in his

work on the development of real time requirements. This software system is being

designed to control the traffic flow on a one-lane bridge. As depicted by Figure 27,

the one-lane bridge is shared by both lanes of a dual-lane road. The software system

controls access to the bridge through the use of traffic lights, and is to keep traffic

travelling across the bridge flowing smoothly in one direction or the other as

appropriate.

<=
A Sensor 4

Two-Lane Road

vSensor 1

=C>
Light RB^

nC
^Light LB

One-Lane

Bridge

Sensor 3 A

Two-Lane Road

Sensor 2 v

=>

Figure 27. Depiction of One-Lane Bridge

The requirements model for the one-lane bridge appears in Appendix A as a set

of rules that governs the software system controlling the bridge. Since this behavioral

model is somewhat difficult to comprehend as a set of rules, a graphical representation

of the one-lane bridge control system is provided in Appendix B.

40

B. ONE-LANE BRIDGE HAZARD

For the purpose of presenting an application of the decomposition templates, the

one-lane bridge control system is analyzed for the hazard "Two Cars Simultaneously on

Bridge in Opposite Directions". Normally, the event at the root of a fault tree would

be much more specific than this event, but for the purposes of illustration an event of

this generality is used so as to demonstrate the various applications of the

decomposition templates developed in Chapter n. The event "Two Cars

Simultaneously on Bridge in Opposite Directions" is used as a starting point because it

is an event that is unsafe for the motorists travelling across the bridge, and is an event

that the software control system should not allow to occur. This hazard appears at the

root of the resultant software fault tree, and is the initial event decomposed via the

decomposition templates. It is noted that the decomposition process is not concerned

with whether the hazard could occur for reasons beyond the control of the software,

such as cars ignoring a red light and illegally entering the bridge.

C. DECOMPOSITION OF ONE-LANE BRIDGE HAZARD

1. Specificity-of-Event Decomposition Dimension

The Specificity of Event decomposition dimension is used to make the

hazard event, "Two Cars Simultaneously on Bridge in Opposite Directions", more

specific in terms of events and conditions associated with these events. Inspection of

the hazard indicates that one way in which the hazard event could be decomposed is by

using the AND (WHILE/WHEN) template (Figure 28).

The AND (WHILE/WHEN) template is indicated because the hazard requires that

an event occurs while a condition holds. The event is "Lights in Both Directions

Green Simultaneously". The condition associated with this event is that "Two Cars

Approach From Opposite Directions". All subsequent decompositions under the event

41

side of the AND (WHILE/WHEN) template branch occur within the scope of this

condition.

Two Cirs Simultaneously On
Bridge ill Opposite Directions

Event Condition

Lights In Both Directions
Green Simultaneously

/Two Cars Approach FtornN
(Opposite Oreclons)

Figure 28. Bridge Hazard Decomposition

The decomposition of the event side of Figure 28 makes further use of the

Specificity of Event decomposition dimension and is based upon the analyst's

knowledge of the system. Inspection of the requirements model in Appendix B reveals

that there are four separate system controlled events that could cause the event side of

Figure 28, "Lights in Both Directions Green Simultaneously", to occur. Since these

four events are independent of one another, they are decomposed from the event side of

Figure 28 through the use of the OR template (Figure 29). Each of these four events

are analyzed independently by the fault tree because any one alone could cause the

event side of Figure 28 to contribute to the occurrence of the hazard.

The events decomposed by Figure 29 come from the requirements model for

the one-lane bridge (Appendix B). The analyst must determine the ways in which the

event "Lights in Both Directions Green Simultaneously" from Figure 28 could occur

within the scope of the system's control. The requirements model's "Initialization"

42

Lignis m Botn Directions
Green Simultaneously

Lights Not
initialized

Red

Rigni-Bouna ngnt
Commanded Green
While Left-Bound

Light Green

Left-Bound Lignt
Commanded Green
While Right-Bound

Light Green

Software
Commands
Botn Lignts

Green
Simultaneously

(AN 01

Event ' 11 'Condition

Right-Bound Light
Commanded Green

Left-Bound
Light Green

Figure 29. Decomposition of Bridge Hazard Event

process and two light control processes indicate that the "Lights in Both Directions

Green Simultaneously" event could occur by at least four events that are controllable

by the system's software.

The first event is "Lights Not Initialized Red". If the lights are not

initialized red, then the possibility exists for the lights to initially come on green when

the system starts to control the bridge.

The second and third events consider the cases where one light is

commanded to green while the other light already green. These two events are

essentially the same event with the difference being which light is already green, and

which light is being commanded to green by the software. Due to this reflexive

condition, only the event "Right-Bound Light Commanded Green While Left-Bound

Light Green" will be expanded. The conditional nature of this event indicates that the

43

event "Right-Bound Light Commanded Green While Left-Bound Light Green" can be

further decomposed using the AND (WHILE/WHEN) template.

The fourth event considered that is controllable by the system software is

"Software Commands Both Lights Green Simultaneously". This event delves into

whether or not the system is capable of turning the traffic lights in both directions

green at the same time.

As shown in Figure 29, the event "Right-Bound Light Commanded Green

While Left-Bound Light Green" is decomposed into the event "Right-Bound Light

Commanded Green" and the condition "Left-Bound Light Green" through the

application use of another AND (WHILE/WHEN) template. This decomposition step is

necessary to distinguish the event being considered for further decomposition by the

fault tree from the condition whose scope will cover all subsequent decompositions of

the associated event.

Cases such as one or both lights being stuck in the green position are

hardware related and are not considered by this particular fault tree application. The

analyst may elect to include hardware events as a means of branching into hardware

fault tree analysis in a manner similar to that presented by Leveson [Ref. 5:p. 570]. If

this were the case, then the inclusion of hardware controlled events such as lights being

stuck green would be appropriate in this decomposition step.

2. Subsystem-Size Decomposition Dimension

Up until this point, the decomposition process has used the Specificity-of-

Event decomposition dimension for decomposing the hazard. Further decomposition of

the event branches of Figure 29 with regard to the Specificity-of-Event dimension do

not readily follow, suggesting that the Subsystem-Size decomposition dimension should

be considered. To illustrate the Subsystem-Size decomposition dimension, the event

44

branches of Figure 29 are further decomposed using Subsystem decomposition

templates.

The Subsystem template allows the current subsystem to be broken down

into subsystems of smaller scope that are more directly applicable to the occurrence of

the hazard. These decomposition steps are driven by the events that are being

decomposed and start with the entire system being considered as the root of the

Subsystem template. Each event from the branches of Figure 29 decomposes in this

case the entire system into the subsystem that plays a role in each particular events

occurrence.

The event "Lights Not Initialized Red" from Figure 29 indicates that the

further decomposition of this event requires the system to be broken down into the

subsystem that controls the initialization of the lights, in this case the "Initialize

System" process (Figure 30). This decomposition step makes use of the process branch

of the Subsystem template, indicating that it is the input-process-output of the

"Initialize System" process that should be next analyzed to determine whether the lights

are initialized red by the system. Neither the Communication branch nor the Access

branch of the Subsystem Template are indicated as avenues for further decomposition

because the requirements model in Appendix A presents "Initialize System" as a

process that does not communicate with other processes and does not have access to

any device or database. Therefore, the Communication and Access branches are both

represented by a diamond indicating that there is no further decomposition along these

avenues.

The application of the Process template to the process branch of Figure 30

is represented by Figure 31. The process "Initialize System" is decomposed with

regard to the event "Lights Not Initialized Red" carried through from the subsystem

decomposition in Figure 30. The Process template gives a structure for analyzing the

45

Decompose Entre Bridge Control System
Based upon Event 'iignis Not initialized Red'

initialize System
Process Causes

ADove Event

Figure 30. Process Subsystem Decomposition

process contained within "Initialize System". Figure 31 shows that the input to the

process, the output from the process, and the constructs internal to the process must all

be analyzed to determine if one or more of these parts of the "Initialize System"

process could allow the "Lights Not Initialized Red" event to occur.

The event "Right-Bound Light Commanded Green" from Figure 29 indicates

that the access that the system has to the right-bound light should be checked for this

event. By analyzing the graphical representation of the one-lane bridge requirements

model in Appendix B, it is apparent that the part of the system that has access to the

right-bound light is the "Control RB Light" process. Figure 32 indicates that the access

of the "Control RB Light" process to the right-bound light should next be analyzed to

determine whether the right-bound light can be commanded green while the condition

of the left-bound light already being green holds. Neither the Process branch nor the

Communication branch of the Subsystem template are indicated for further

decomposition, so both of these branches are represented as diamonds in Figure 32.

46

'initialize System* Process indicated
By Event 'Lights Not Initialized Red'

Input To 'Initialize
System" Causes

Aoove Event

Constructs Internal
To 'Initialize System"
Cause ADove Event

Output From
'Initialize System

Causes ADove
Event

Figure 31. Process Template

Decompose Entire Bridge Control
System Based upon Event

"Right-Bound Light Commanded Green"

Access That Control
RB Light Process

Mas To Right-Bound
Light Device Causes

Aoove Event
To Occur

Figure 32. Access Subsystem Decomposition

47

The application of the Access template to the access branch Figure 32 is

represented by Figure 33. The process "Control RB Light" is decomposed with regard

to the event "Right-Bound Light Commanded Green" carried through from the

subsystem decomposition in Figure 32. The Access template gives a structure for

analyzing the access that the process "Control RB Light" has to the right-bound light of

the one-lane bridge.

Access That 'Control RB Light' Process Has
To Rignt-Bouno Lignt Device Causes Event

'RKjnt-Bouna Light commanaea Green'

'Control RB Light-
Has Access To

Right-Bound
Light Device

Command From
Control RB Light-

To Rignt-Bouna

Light Causes
Above Event

'Control RB Light'
Sends Command
Causing ADove

Event To

Right-Bound
Light Device

Figure 33. Access Template

The template in Figure 33 shows the three cases that must hold, and

therefore be analyzed by the fault tree, in order for the "Control RB Light" process to

cause the event "Right-Bound Light Commanded Green". The first case is that

"Control RB Light" must have access to the Right-Bound light on the bridge. The

second case is that "Control RB Light" must be capable of sending one or more

commands to the Right-Bound light that would result in the event "Right-Bound Light

Commanded Green". The third case is that "Control RB Light" must actually send the

commands specified in the second case to the Right-Bound light.

48

The decomposition of the event "Software Commands Both Lights Green

Simultaneously" from Figure 29 requires knowledge of how the system allows each

light to be commanded green. Requirements model rules 1 and 5 from the

requirements model in Appendix A require each light control process to wait until

exclusive access to the bridge is granted before turning the controlled light green. This

requirement of waiting for exclusive access indicates that the system should be broken

down into the subsystems that communicate through whatever process controls the

exclusive access to the bridge (Figure 34).

Decompose Entire Bridge Control System
Based Upon Event 'Software Commands

Both ngnts Green Simultaneously'

Process

Communication Between
RB Exclusive Access

And
LB Exclusive Access
Causes Aoove Event

Access

Figure 34. Communication Subsystem Decomposition

The requirements model identifies two processes that control the access to

the bridge through a rendezvous type operation. These two processes are the "RB Wait

For Exclusive Access To Bridge" process and the "LB Wait For Exclusive Access To

Bridge" process. For illustration purposes these two processes will be referred to as

"RB Exclusive Access" and "LB Exclusive Access" respectively. The application of

the Communication template to the Communication branch of Figure 34 is represented

49

by Figure 35. The two processes, "RB Exclusive Access" and "LB Exclusive Access",

that control the access to the bridge through a rendezvous type operation are

decomposed with regard to the event "Software Commands Both Lights Green

Simultaneously" carried through from the subsystem decomposition in Figure 34. The

Communication template gives a structure for analyzing the rendezvous type operation

which is the way the two exclusive access processes are assumed to communicate. At

this point, neither the Process branch nor the Access branch of the Subsystem template

are indicated for further decomposition. These branches are therefore both represented

by diamonds in Figure 34.

Communication Between RB Exclusive Access
And LB Exclusive Access Processes Causes

Event "Software Commands Both Lights
Green Simultaneously" To Occur

Rendezvous
Between

RB Exclusive Access
And

LB Exclusive Access
Causes Event To Occur

Figure 35. Communication Template

As Figure 35 indicates, the rendezvous between the two exclusive access

processes must be evaluated. The effect of a rendezvous is to create a new process.

This new process is entirely made up of the interaction that goes on between the two

exclusive access processes when the rendezvous type operation is accomplished, and is

in fact the single process that actually controls exclusive access to the bridge. This

50

new process must be analyzed to determine if it could cause the event "Software

Commands Both Lights Green Simultaneously". The next step of the analysis, as

indicated by the Communication template, is to analyze the new process using a

Process Template. Based upon the assumption that the two exclusive access processes

communicate via a rendezvous type operation, the Communication via Shared Memory

and Communication via Exchange of Data branches of the Communication template are

not pursued. These two branches are therefore each represented by a diamond in the

Communication Template of Figure 35.

3. Overall Fault Tree for Bridge Hazard

Figure 36 shows the entire software fault tree that results from the

application of decomposition templates to the one-lane bridge hazard. The

decomposition process using the decomposition templates developed in Chapter II

continues until the point at which the specific system modules, events and associated

conditions are indicated is sufficient detail. At this point, if the software system has

been developed down to the code level, the software fault tree analysis can be

continued through the application of Cha statement templates. If the software system is

has not yet been developed to the code level, the modules, events and conditions

indicated by the software fault tree can be used to provide specific input regarding

what the detailed design of the indicated modules should be concerned with.

D. SUMMARY OF DECOMPOSITION TEMPLATE APPLICATION

Hazard decomposition using the decomposition templates presented in this thesis

continues until a contradiction is reached, or a specific process within the software

system is indicated. Where a specific process is indicated, the decomposition of the

hazard continues with the use of statement templates. The use of statement templates

is supported by the structure of the fault tree resulting from the application of the

51

liiliahze
System
Process

s
input lo
Initialize
System

Intenal
Coislncls

01 liiliahze
System

Cars On Bridge In Opposite Directions

5
uoin Ligits breen /Cirs Approach^)

Left-Bound Light
Commanded Green
While RighlBomd

Ligll Green

<piphcite>

Rigll-Bond Light
Comnanded Greet
Wlile Left-Bomd

Light Greet

1
Software Commands

Both Lights Gieei

Right-Boind Light
Commanded Green

I
ell-Bound\

Light Greet)

Oulpil
From

Initialize
System

^TPCIlsS

Lontroi Rl
Has Access

To Light
Conn

A
Coilrol ITS
Has Access

To Light

Command From
Control RFJ

To Light
Causes Event

Control RB
Sends

Command .Memory

A

/PlOCtSSN

Communication
Between RB

Exclusive
Access And

LB Exclusive
Access

I
Rendezvous
Between RB

Exclusive
Access And
LB Exclusive

Access

/ACMSSN

Figure 36. Overall Fault Tree for Bridge Hazard

52

decomposition templates. The fault tree up to this point contains the conditions that

must hold and the events that must occur in order for the system to arrive in the unsafe

state of the hazard. With the fault tree indicating a specific process or subsystem, the

use of statement templates can be better focused. The statement templates now have

the advantage of starting off pointing to the specific process to be analyzed, with both

the events and associated conditions known.

53

IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this thesis is to develop a formalized method of decomposing

system-level hazards. The decomposition templates presented herein provide the

software fault tree analyst with a framework for decomposing a hazard to the point at

which line by line code analysis can be conducted with existing statement templates.

This framework serves as a formal method for conducting the decomposition of system-

level hazards, and ensures that as many as possible of the applicable decomposition

aspects are considered. The decomposition of system-level hazards had previously been

conducted in a largely human intensive manner, carrying both the drawback of

introducing human error in the form of oversight as well as the strength of human

insight. The application of the decomposition templates developed in this thesis serves

to reduce the former and enhance the later.

1. Relevance to MIL-STD-882B

Task 202 of MIL-STD-882B [Ref. ll:p. 202-1] provides guidelines for the

identification of safety critical areas and the evaluation of hazards. The hazards

identified here include the potential contribution of software events to system/subsystem

mishaps. These software events include software commands and responses such as

inadvertent commands, failure to command, and untimely commands and responses.

The decomposition templates developed within the Specificity-of-Event Decomposition

Dimension of Chapter II can be used to determine the software events that can

contribute to system mishaps. The events identified by the decomposition templates

can then be incorporated into the safety design criteria of the software specifications.

54

Task 203 of MIL-STD-882B [Ref. ll:p. 203-1] provides guidelines for the

identification of hazards associated with the design of subsystems. The hazards

identified here include the potential contribution of software events and faults with

regard to the safety of a subsystem. The subsystem decomposition templates developed

within the Subsystem-Size Decomposition Dimension of Chapter II can serve as an

analysis technique for performing Task 203's Subsystem Hazard Analysis with regard to

the software of a system, and can be used to determine whether the safety design

criteria in the software specification have been satisfied.

2. Advantages of Decomposition Templates

The advantages of using the decomposition templates presented in this thesis

to decompose system-level hazards stem from the formalized standpoint from which the

templates were developed. The decomposition templates give the software fault tree

analyst a structured viewpoint from which to evaluate the software system. The fault

tree analyst can shift between the two interdependent decomposition dimensions as

necessary, focusing on either increasing the specificity of the event being considered, or

reducing the scope of the subsystem associated with the event. Shifting from one

decomposition dimension to another essentially allows the decomposition process to

shift the perspective from which the software system is being considered. The

templates serve to aid the analyst by providing a step by step framework with which to

approach each subsequent decomposition of the system-level hazard. As indicated in

Chapter III, this decomposition process can be continued until the point at which

statement templates can be used. The structure of the software fault tree provides the

analyst with information that focuses the application of statement templates. The

application of statement templates yields information of sufficient detail so as to allow

the analyst to make use of the Ada exception handling mechanism as a method of

pruning the developing fault tree. Pruning a fault tree in this manner is analogous to

55

Leveson and Harvey's method of inserting run-time checks into the code to trap a

developing unsafe state [Ref. 4:p. 576]. Each decomposition step provides specific

events and/or conditions that are to be further evaluated, as well as the specific

subsystem within which to evaluate these events and conditions. Applying the

decomposition templates presented in this thesis effectively yields pointers to specific

modules within the overall software system, along with information such as events and

conditions that the module needs to be evaluated for. The effect of the use of hazard

decomposition templates is to give the application of statement templates a specific

starting point, as well as a specific hazard to be analyzed by the statement templates.

3. Limitations of Decomposition Templates

The application of decomposition templates does not relieve the analyst from

the need for a through understanding of the software system. In order for the

Subsystem-Size Decomposition Dimension to be effective, the analyst must be

thoroughly familiar with the communication links and interfaces through which the

software system will function. The reliance of this decomposition dimension on the

communication between modules implies that, at a minimum, a high-level design of the

software system to be analyzed is needed in order for this decomposition dimension to

be effective. This requirement obviously limits the effectiveness of this dimension if

application when applied to solely the requirements specification of a system.

The effectiveness of the Specificity-of-Event Decomposition Dimension is

also reliant on the analyst's knowledge of the software system. The focus of this

decomposition dimension centers around itemizing each event that could cause the

given hazard in the current subsystem. For the fault tree to fully reflect all the possible

paths in which the hazard could occur, the scope of the decomposition must constitute

a complete enumeration of the ways in which the hazard could occur within the current

subsystem. In other words, the events resulting from any decomposition step must

56

represent in total the ways in which the hazard could occur at that level. A problem

arises in how confident the analyst is that every resultant event has been properly

reflected in the decomposition. Specifically, the analyst must know when every event

that could result from the decomposition of the hazard within the current subsystem has

been considered. For the Specificity-of-Event Decomposition Dimension to be

effective, it is clear that a through knowledge of how the software system functions is

required.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

Several topics related to this thesis warrant further research. First, research is

needed to determine how the process of decomposing a system-level hazard can be

automated. Even with the software fault tree limited to the analysis of safety critical

events, the fault tree of a moderately sized system will be substantial. Although aided

by the decomposition template framework, the development of any fault tree is labor

intensive. The reliance of the Subsystem-Size Decomposition Dimension on the

communication links and interfaces of a system suggests that, given a high-level design,

automation of this decomposition dimension may be possible.

Second, the issue of integrating formal requirements into a safety analysis should

be investigated. The ability of the Specificity-of-Event Decomposition Dimension to be

applied to the requirements of a system indicates that this decomposition dimension can

be an effective method of analyzing the requirements of a system from a safety

standpoint.

A third area recommended for research is the possibility of transferring the

logical basis of the templates into a formal logic. A formal logic would enable the

analyst to give proof conditions that could be used to formally prove whether the

system could arrive in a state in which a specific hazard has occurred.

57

APPENDIX A. REQUIREMENTS MODEL RULES FOR ONE-LANE BRIDGE

Rule 1 : If in right-bound state Trafficjdle and a right-bound car approaches the
bridge (as detected by sensor 1), then set RB_Cars to 1, request
Access_to_Bridge, and enter right-bound state Wait_for_Exclusive_Access
to_Bridge. When exclusive access is granted, enter right-bound state
Traffic_Active and rum light RB green.

Rule 2 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars by
1.

Rule 3 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars
by 1.

Rule 4 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge
and RB_Cars is 1, then turn light RB red, set RB_Cars to 0, release
Access_to_Bridge, and enter right-bound state Traffic_Idle.

Rule 5 : If in left-bound state Trafficjdle and a left-bound car approaches the bridge
(as detected by sensor 3), then set LB_Cars to 1, request Access_to_Bridge,
and enter left-bound state Wait_for_Exclusive_Access_to_Bridge. When
exclusive access is granted, enter left-bound state Traffic_Active and turn
light LB green.

Rule 6 : If in right-bound state Traffic_Active and a right-bound car leaves the bridge
(as detected by sensor 2) and RB_Cars is not 1, then decrement RB_Cars by
1.

Rule 7 : If in left-bound state Traffic_Active and a left-bound car leaves the bridge
(as detected by sensor 4) and LB_Cars is not 1, then decrement LB_Cars
by 1.

Rule 8 : If in left-bound state Traffic_Active and a left-bound car leaves the bridge
and LB_Cars is 1, then turn light LB red, set LB_Cars to 0, release
Access_to_Bridge, and enter left-bound state Trafficjdle.

58

APPENDIX B. GRAPHICAL REPRESENTATION OF ONE-LANE BRIDGE

Set Light RB Red Initialize System Set Ught LB Red

Right-Mound Car
Approaching

Right-Mound
Car Leaving

Control RM Light
[Figure 3-2]

Set Light
RM Red

Set Light
RM Green

lx-ft-Mound Car
Approaching

I.cft-Mound
Car I.caving

Control LM Light
| Figure 3-31

Set Light
LM Red

Set Light
LM Green

Acccssto.Mridge (Semaphore)

RM Cars, LMCars (Nonncgativc Integer)

FIGURE 3-1: Graphical Representation or Behavioral Requirements:

Control Transformation*

59

light KM, LU = Kcd
Access to Hridgc = Free
RU.Cars, LH.Cars = 0

 [Tigurc 3-3]

* *

* Right-Hound.Traffic.ldlc *
* »

Car Approaches on Ix;ft

RU.Cars = 1
Request Acccss.to.Hridge

**
* *
* RU. Wait. for. lixclusivc.Acccss.to.Hiidgc *
* «
**

Granted Acccss.to.Hridge

Light RH = Green

Car Leaves flight
and KH.Cars • 1

light Rll = Red
Acccss.to.Bridgc =

Tree
1U3 Cars = 0

Car Approaches on Left

RH Cars = RU Cars + 1

* •

* Right-Bound Traffic Active *
* •

Car Approaches on Left

RH Cars = RH Cars + 1

Car Leaves Right and RH.Cars > 1

RU Cars = RH Cars - 1

FIGURE 3-2: Graphical Representation of Behavioral Requirements:

State Transition Diagrams

60

I Figure 3-21

• *

* Left-Bound Traffic Idle *

Car Approaches on Right

LB.Cars = 1
Request Acccss_to_Bridgc

*****•****•*•*••*••*******************•*****•****•
* *
* LB.Wait for lixclusivc.Acccssto.Bridgc *
* *
**

*
Granted Acccss_to_Bridgc

Light LB = Green Car Approaches on Right

LB Cars = LB Cars + 1

Car Leaves Left
and LBCars = 1

Light LB = Red
Acccss_to_Bridgc =

Free
LB Cars = 0

* *
* Left-Bound Traffic Active *
* •

Car Approaches on Right

LB Cars = LB Cars + 1

Car I.cavcs Left and LBCars > 1

LB Cars = LB Cars - 1

FIGURE 3-3: Graphical Representation of Behavioral Requirements:
State Transition Diagrams

61

LIST OF REFERENCES

1. Hammer, W., Handbook of System and Product Safety, Prentice Hall, Inc., 1972.

2. Bagchi, C, "Application of Fault Tree Analysis Techniques To Predict
Instrumentation System Failure and Define Problem Areas in a Nuclear Power
Plant Containment Study", IEEE Transactions on Power Apparatus and Systems,
Vol. 11, pp. 4485-4492, November 1981.

3. Fussell, J. B., "A Formal Methodology for Fault Tree Construction", Nuclear
Science and Engineering, Vol 52, No. 4, pp. 421-432, December 1983.

I
4. Salem, S.L., A Computer-Oriented Approach to Fault Tree Construction, Ph.D.

Dissertation, University of California, Los Angeles, California, 1976.

5. Leveson, N. G., Harvey, P. R., "Analyzing Software Safety", IEEE Transactions
on Software Engineering, vol.9, pp. 569-579, September 1983.

6. Neumann, P.G., "Letters From The Editor", Software Engineering Notes, Vol 8,
No. 5, p. 3, October 1983.

7. Littlewood, B., "How to Measure Software Reliability and How Not To", IEEE
Transactions on Reliability, vol. R-28,no. 2, pp. 103-110, June 1979.

8. Cha, S. S., Leveson, N. G., and Shimeall, T. J., "Fault Tree Analysis Applied to
Ada", Proceedings of the Tenth International Conference on Software
Engineering, Singapore, PP. 377-386, 1988.

9. Beizer, B., Software System Testing and Quality Assurance, p. 7, Van Nostrand
Reinhold, 1984.

10. Ripps, D.L., An Implementation Guide to Real-Time Programming, Prentice Hall,
Inc., 1990.

11. Department of Defense Military Standard MIL-STD-882B, System Safety Program
Requirements, 28 June 1977.

62

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Computer Technology Programs, Code 37 1
Naval Postgraduate School
Monterey, California 93943

4. Department Chairman, Code CS 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Timothy Shimeall 5
Code CS/Sm
Computer Science Dept.
Naval Postgraduate School
Monterey, California 93943

6. Nancy Leveson 1
ICS Department
University of California, Irvine
Irvine, California 92717

7. Robert E. Westbrook 1
Code 31C
Embedded Computer Technology Office
Naval Weapons Center
China Lake, California 92555-6001

8. Stephen Cha 1
ICS Department
University of California, Irvine
Irvine, California 92717

9. J. R. Taylor 1
Head of Institute
Institute for Technical Systems Analysis
Jernbanegade 52 A
DK 400 Rosklide Denmark

63

10. Peter Neumann
SRI International
Menlo Park, California 94025

11. David Pamas
Computing and Information Science
Queen's University at Kingston
Kingston, Ontario, Canada K7L 3N6

12. Barry Daniels
Manager, Software Engineering: Systems
National Computing Centre Limited
Oxford Road
Manchester, England Ml 7ed

13. George Dinsmore
TRW
1 Space Park 134/3816
Redondo Beach, California 90278

14. Wolfgang Ehrenberger
Fachhochschule
Fachbereich Informatik
6400 Fulda, West Germany

15. Bev Littlewood
Center for Software Reliability
City University
Northampton Square
London ECIV OHB, England

16. Donald Needham
7429 N. Oriole
Chicago, Illinois 60648

17. David Ripps
c/o Prentice Hall Publishers
Prentice Hall Building
Englewood Cliffs, New Jersey 07632

64

